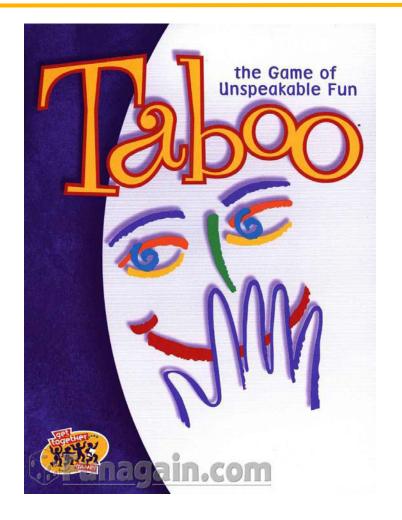
An Easy Path to Exascale

Scott Pakin Applied Computer Science Group Los Alamos National Laboratory 25 April 2012

Disclaimer

- The opinions expressed herein definitely do not reflect the positions of Los Alamos National Laboratory, the National Nuclear Security Administration, or the United States Department of Energy
- Please don't cut off my funding



Background

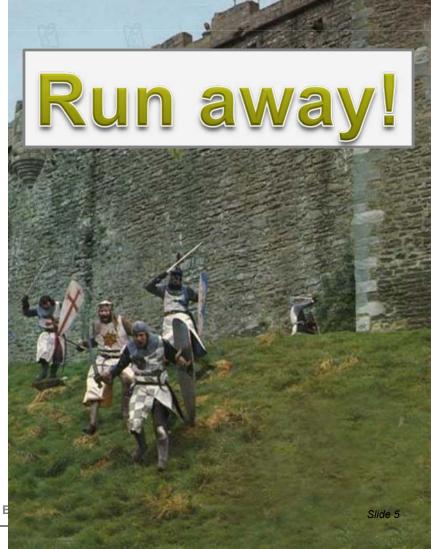
- Many of us have been to lots of exascale meetings
- If these meetings forbade the use of the words
 - energy
 - resilience
 - programmability
 - co-design

the meetings would be a lot shorter

(but perhaps more fun)

Exascale Refrains

- We don't know how to reduce system power
- We don't have a good way to tolerate frequent faults
- As component heterogeneity increases, programmability decreases



Slide 4

Solution

How can we deal with all of the problems of exascale?

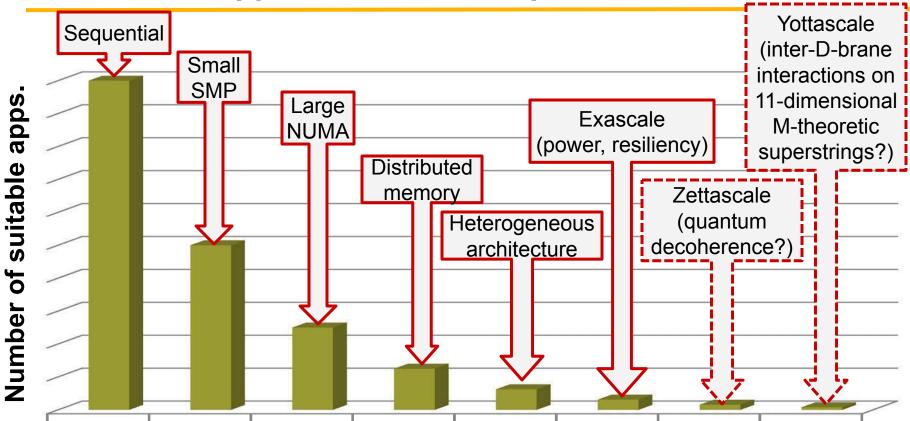
UNCLASSIFIE

My Proposal

What if instead of building an exascale system, we gave each of 1000 researchers his/her own, private, petascale system?

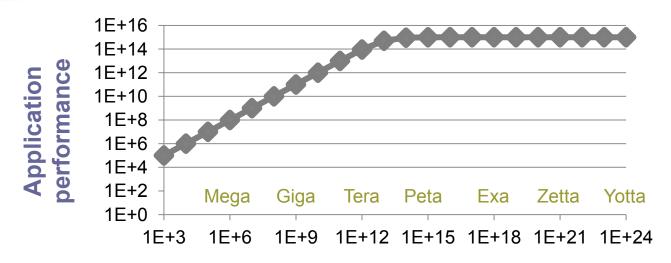
Slide 6

My Proposal


- What if instead of building an exascale system, we gave each of 1000 researchers his/her own, private, petascale system?
- Different locations → distribute load across the power grid
- Fewer components → faults occur less frequently
- Less complex hardware → can stick with MPI+X (where X=Ø)
- Dedicated systems → no long queues waiting for job to start
- More aligned with vendor roadmaps → no cajoling needed

- ✓ Power problem solved
- ✓ Resiliency problem solved
- ✓ Programmability problem solved
- ✓ Increased productivity
- √ Lower cost

What About Applications that Require Exascale?



- Approaching a singularity where we don't have any applications
- (except perhaps LINPACK)

Slide 8

UNCLASSIFIED

We May be Facing a Petascale Performance Asymptote

Theoretical peak performance

Parallelism

 By Amdahl's Law, if your application is less than 99.9% parallelized, you'll see at best only petascale performance on an exascale system

Resilience

Performing the same work three times gives you 1/3 of the remaining performance

Power

 To stay within the power budget, some components may have to be turned off or downclocked, lowering performance even further

Summary

- Exascale computing poses numerous challenges
 - Energy, resilience, programmability
- Relatively few applications both require exascale and can be programmed to exploit complex exascale hardware
- Many applications can take advantage of petascale
 - Limited by access to machines
 - (Long queue if you want the machine for yourself)
- Proposition: Buy 1000 research teams their own petascale computer
 - Increases scientists' productivity
 - Why put ourselves through the pain of an exascale before its time?
 - I'll wait until I can borrow an exascale cell phone from my grandkids
- It's not like there isn't still exciting research to be done at petascale

